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Abstract 

Nonlinear normal vibration modes (NNMs) are a 
generalization of the normal vibrations in the linear 
systems. In conception of NNMs by Kauderer-
Rosenberg all position coordinates can be defined 
from any one of them. In conception of NNMs by 
Lyapunov-Shaw-Pierre all phase coordinates can be 
defined from two selected ones. Curvilinear 
trajectories of NNMs in a configuration space, or in a 
phase space, can be obtained as power series.  

The NNMs theory is used to study vibrations of 
some linear structure connected with the single-DOF 
nonlinear absorber. An essentially nonlinear 
oscillator, a snap-through truss with three equilibrium 
positions, and a vibro-impact oscillator are chosen as 
absorbers. Construction and stability analysis of the  
NNMs are presented. If the localized mode is stable, 
and the non-localized vibration mode is unstable, the 
vibration energy is concentrated in the absorber.   
 Free damped oscillations of the double tracked road 
vehicle with a nonlinear response of the suspension 
can be considered by the NNMs theory too. The 7-
DOF nonlinear model is used to analyze the 
suspension dynamics with smooth characteristics. The 
quarter-car model is considered for a case of the non-
smooth characteristic of the shock absorber.    
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1 Introduction 
Nonlinear normal vibrations modes (NNMs) are a 

generalization of the normal vibrations of the linear 
systems. In the normal mode, a finite-dimensional 
system behaves like a single DOF conservative one, 
and all position coordinates can be analytically 
parametrized by any one of them. This conception of 
NNMs was proposed by Kauderer and Rosenberg.  

Rosenberg [Rosenberg, 1962, 1966] defined NNMs 

as ‘vibrations in unison’ and introduced a broad class 
of essentially nonlinear conservative systems allowing 
for NNMs with rectilinear trajectories in a 
configuration space.  

In general, the NNMs trajectories are curvilinear 
instead of straight lines in linear systems. The power 
series method was proposed in [Manevich and 
Mikhlin, 1972; Manevich, Mikhlin and Pilipchuk, 
1989] to construct the curvilinear trajectories of 
NNMs.  Shaw and Pierre reformulated the concept of 
NNMs for a general class of nonlinear discrete 
oscillators [Shaw and Pierre, 1991, 1993]. The 
analysis is based on the computation of invariant 
manifolds on which the NNM oscillations take place. 
All phase coordinates can be well defined from a pair 
of phase coordinates. This idea was first proposed by 
Lyapunov [Lyapunov, 1947]. In [Mikhlin, 1995] Padé 
approximations are used for an analysis of NNMs 
with large amplitudes.  

Rauscher’s ideas and the power-series method for 
trajectories in a configurational space are used in the 
construction of NNMs in nonautonomous and self-
excited systems, close to conservative ones [Mikhlin, 
1974; Mikhlin and Morgunov, 2001]. In such systems 
some additional potentiality conditions must be used. 
It means that a loss of energy on the average over the 
period of the periodic solutions under consideration, 
is absent.   

Basic results on NNMs are presented in the book by 
Vakakis et al. [Vakakis et al, 1996] which describes 
quantitative and qualitative analyses of NNMs, 
including localized modes, an analysis of stability, 
and an investigation of NNMs in distributed systems.  
 

2 Nonlinear normal modes in a system with an 
essentially nonlinear absorber 

Numerous publications contain an analysis of 
different devices for the vibration absorption of 
mechanical systems. The general theory of the 
linear/nonlinear absorbers is presented in [Kolovski, 
1966; Frolov, 1995].   



Oscillations of the two-DOF system which contains 
the essentially nonlinear absorber can be studied by 
the NNMs approach. Both the non-localized, and the 
localized vibration modes are possible here. The 
localized NNM is appropriate for the absorption, 
when the main linear system and the absorber have 
small and large amplitudes, respectively. If the 
localized mode is stable, and the non-localized 
vibration mode is unstable, the vibration energy is 
concentrated in the absorber. A system is considered 
where the nonlinear single-DOF absorber connected 
with a fixed point by cubically nonlinear spring 
(Fig.1). Here a mass of the absorber m  is essentially 
smaller than that of the linear subsystem M .  

 
 
 
 
 

Fig.1. The system under consideration 
 

  One has the following equations of motion:  
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Here x  and y  are the displacements of the 
absorber and main elastic systems respectively, 2ω , 
γ  and c  are stiffness coefficients of the springs, ε is 
the formal small parameter. 

Eliminating t  from the equations (1) by using the 
system energy integral, we can derive an equation to 
describing the NNM trajectory )x(y [14]. The zero 
approximation with respect to ε  ( 0=ε ) gives us the  

following: 3
0 xcxy

γ
+= . This is the non-localized 

vibration mode. The classical procedure of the small 
parameter method permits to present the NNM 
trajectory as power series with respect to ε . The 
localized vibration mode can be analized if the next 
time transformation is introduced: τε=t . One has 
in this case the following zero approximation with 
respect to ε : 00 =y .  The first approximation 
solution can be obtained in the form of power series 
by x . Test numerical calculations show a good 
accuracy of the analytical solutions.  
A harmonic approximation of the non-localized 
vibration mode permits to reduce a problem of the 
NNM stability to a single variational equation in the 
form of the standard Mathieu equation parameters 

•• δε , (these parameters are defined by the system (1) 
parameters). The vibration amplitudes are not limited 
here. The Fig. 2 shows a position of point, 
corresponding to the NNM, in a plane of the Mathieu 
equation parameters (for some fixed values of the 
parameter γ  and some other parameters). Direction 
of the vibration amplitudes increase is showed by the 
arrows. The non-localized vibration mode is situated 
in the region of instability (this region is shaded), but 
for not very big vibration amplitudes the solution is 

near the boundary of the region. A problem of the 
localized vibration mode stability can be reduced to 
the Mathieu equation too. It be obtained that the 
localized mode is stable for almost all values of the 
system parameters [Mikhlin and Reshetnikova, 2005].   

 

 
Fig. 2: Region of the non-localized mode instability.  

 
Other approach of the NNMs stability analysis is 

based on the so-called algebraization by Ince. In this 
case a new independent variable associated with the 
solution under consideration is chosen [Ince, 1926]. 
Then the variational equation is converted to the 
equation with singular points. This approach was used 
earlier in the NNMs theory [Mikhlin and Zhupiev, 
1997]. This algebraization gives us more exact results 
than those obtained by the reduction of the stability 
problem to the Mathieu equation [Mikhlin and 
Reshetnikova, 2005]. One introduces the following 
transformation of the independent variable: xt → . 
One has after some transformations the variational 
equation with singular points. It can be demonstrated  
that in this case solutions corresponding to boundaries 
of the stability/instability regions are the following: 
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Substituting the series to the variational equation 
and matching respective powers of x , we can write  
recurrent systems of linear algebraic equations to 
determine coefficients of the expansions. These 
systems have nontrivial solutions if their determinants 
are equal to zero. One obtains from here the 
stability/instability regions boundaries. It generally 
corresponds to results obtained for the Mathieu 
equation. But for small vibration amplitude  the non-
localized vibration mode is situated in the domain of 
stability near its boundary and gets into the instability 
domain if the vibration amplitude increases. 
Additional narrow instability regions are obtained for 
the localized vibration mode in a case when the 
stiffness coefficient γ  is small.   
 

3 Snap-through truss as a vibration absorber 
Possibility of the elastic oscillations absorption by 
means of the snap-through truss is considered here.  
The nonlinear absorber with three equilibrium 
positions (snap-through truss) is attached to the linear 
oscillator. By assumption, the truss is shallow and its 

γ m с
М 



mass and stiffness are significantly smaller then the 
corresponding parameters of the linear system.   

 
 

Fig.3. The system with the snap-through truss  
 

Let )W,U(  be the generalized coordinates; L is a 
length of the spring; ϕ is the angle, corresponding to 
the equilibrium position; κ   is a spring stiffness of 
the truss; κ 1 is a stiffness of the main elastic system. 
The dimensionless variables L/Ww;L/Uu ==  
and 1k/Mt τ=  are introduced. Let us introduce, 

1;; ≺≺εγε=γµε=µ . The new variable is 
introduced too: )1/()k1(u1u γ+−γ+= . Retaining 
the linear, quadratic and cubic terms by  1u  and  w  
we can write the equations of motion as   
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To study the periodic motions of the system (2) 
with large amplitudes we determine here the NNM in 
the form u1=u1(w) [Avramov and Mikhlin, 2004]. The 
solution is presented as power series, which is then 
substituted into the corresponding equation and to the 
boundary conditions to obtain the coefficients of the 
series. Numerical calculations show a good accuracy 
of the analytical solution. The snap-through truss has 
significant amplitudes of oscillations and the linear 
oscillator has small amplitudes. If such motions are 
stable, the vibration absorption is guaranteed.   

4 The snap-through periodic motion stability 
A small curvature of the obtained NNMs is used 

here to analyze their stability [Avramov and Mikhlin, 
2004]. Let us introduce new variables (ξ,η). The  ξ  
axis is directed along the rectilinear approximation of 
the NNM trajectory and the orthogonal variation η(t) 
defines the orbital stability of NNMs. One considers a 
stability of the periodic motions with large amplitudes 
taking into account that )(Ou1 ε=  and introducing 
the following representation: w=w0+O(ε). We study 
variations η(t) of periodic motions 1u : η+= 11 uu . 
One obtains after some transformations the following 
variational equation:  
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Here k is the elliptic integral modulus; H is the 
oscillator total energy. Substituting the Fourier-series 
expansion of cn2(t,k0) into (3), we can rewrite it as the 
Hill’s equation which is analyzed by the multiple 
scales method. Resonances of the orders s  
(s=1,2,3…) are considered:  ,02* ss εσ+ω=Ω   

where σs is the detuning parameter. Since the snap-
through truss is shallow, the next notations can be 
introduced:  .1*;1с*с1 ≺≺εε=−  After some 
analysis of the corresponding modulation equations, 
which are not presented here, we can obtain the 
stable/unstable region boundaries on the system 
parametric plane )*W,с(  as 

),(O)2
*(O

2
*W
1c2c

*1
c2
*W

sp

)0k(сK2
ε+ε+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
ε−=

π
   (4) 

where  );2
*(O

2
*W
1c2c

*2
12

0k ε+ε+= maxW*W = ;  

 ).2
*(O2

*W2
1c

2c

2
1K*2

1K)0k(K ε+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛′ε+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   

Here K(k0) is the complete elliptic integral of the 
first  kind. Fig. 4 shows curves (OA1),(OA2),(OA3) in 
the plane )*W,с( , which are in correspondence with 
the equation (4). The boundaries of the stable/unstable 
regions are shown qualitatively as curves (B1C1D1), 
(B2C2D2), (B3C3D3). If  ϕ  is small, the unstable 
oscillations regions have the order O(ε). If value ϕ  is 
increased, the width and number of the unstable 
regions are decreased. We can choose such values of  
ϕ,  that is the periodic motions are always stable.  
 

 
Figure 4: The instability regions of the snap-through 

motion.  
Remark  

Note that a similar analysis of localized and non-
localized NNMs is realized for the two-DOF system 
containing a vibro-impact oscillator as absorber. 
Besides, the forced resonances are investigated in 
such systems with three types of absorbers, namely, 
an essentially nonlinear oscillator with a single 
equilibrium position [Mikhlin and Reshetnikova, 



2005]; a snap-through truss with three equilibrium 
positions [Avramov and Mikhlin, 2004]; and a vibro-
impact oscillator.     

 

5 Principal model of the vehicle suspension 
nonlinear dynamics.  

7-DOF model of the vertical and axial vehicle 
dynamics is considered here for a case of 
independent-solid axle suspension to predict the 
vehicle body and wheel states. It is possible to 
consider, by using this model, all principal vehicle 
motions. The correctness of this model is 
substantiated by comparison with some experiments 
[Wong, 1993; Hyo-Jun Kim, Hyun Seok Yang, 
Young-Pil Park, 2002; Pilipchuk et al., 2006]. It is 
known that nonlinear effects in the suspension 
dynamics are important if corresponding 
displacements are in the order of 0.05-0.1 m, or 
larger. Here the smooth nonlinear spring 
characteristics in front and rear suspensions are taken 
into account. NNMs and corresponding amplitude-
frequency relations are obtained for the nonlinear 7-
DOF system.   

In order to describe the double-tracked road vehicle 
dynamics, the 7-DOF mathematical model is used 
(Fig.5). It considers the heave, roll and pitch motions 
of the car body.  Here z is the vertical displacement, 
α  is the pitch angle, β  is the roll angle, ix  is the 
vertical displacement of i-th suspended mass which 
are equivalent to the wheel, 1d , 2d  are the front and 
the rear track widths and 1l , 2l are the front and the 
rear wheel bases. In this model tires are presented as 
elastic elements with linear characteristics. The 
suspension is characterized by nonlinear elastic 
characteristics of the front and rear springs, and linear 
damping characteristics. Typical elastic characteristics 
are shown in the Fig. 6.  

 
Fig. 5. Mathematical model of a double-tracked road 
vehicle under consideration  

 
One has seven generalized coordinates to describe 

vibrations of the model.  
 

6 Nonlinear normal modes and the transients 
(smooth characteristics of suspension)  
To obtain NNMs one chooses a couple of new 
independent variables (u, v), where u is one of the  

 
Fig. 6. Nonlinear characteristics of the front f1(x) 

 
generalized coordinates, and v is the corresponding 
generalized velocity. According to the Lyapunov-
Shaw-Pierre approach, the nonlinear normal mode is 
such regime when all generalized coordinates and 
velocities are univalent functions of the selected 
couple of variables.  One presents the NNMs in the 
form of the power series by independent variables  u 
and v:  
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To calculate coefficients of the series (5) one has a 
system of algebraic equations. One of the NNMs 
obtained here is shown in the Fig. 7, where the 
coordinate z is chosen as the independent variable 
u .  If the NNM in the form (5) is obtained, the series 
are substituted to equations of motion, and functions u 
= u(t) and v = v(t) can be obtained too. As a result, 
seven NNMs were determined. Numerical 
calculations show a good accuracy of the obtained 
analytical results. To construct the NNMs skeletons 
the harmonic linearization method together with a 
continuation procedure were used.  

  
a) The angle α versus u  
and v 

b) The displacement x1 
versus u and v 

  
c) The angular velocity α�  
versus u and v 

d) The velocity 1x� versus  
u and v 

Fig. 7. The first NNM (independent variable z) 
  

In a case of large initial displacements only the low-
frequency vibration modes of the car body are stable, 
and other vibration modes tend to the low-frequency 
modes.  
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7. Nonlinear normal modes and the transients 
(shock absorber, non-smooth characteristic) 
 To investigate the suspension dynamics taking 
into account a non-smooth characteristic of the shock 
absorber, the quarter-car model is considered (Fig.8).  
 

 
 

Fig. 8. The quarter-car model 
 
 Equations of motion for the quarter-car model are 
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where )(xf  is a stiffness function, )(xd � is a 
piecewise damping function of the suspension, 
namely,  
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An analysis of NNMs is made for a case of non-
symmetric piecewise linear damping characteristic.  
Both NNMs were obtained by using the method 
which is described below. Motions on places, 
corresponding to NNMs, are shown in Fig. 9.  After 
each gap of the piecewise linear damping 
characteristic, the short transient from one place to 
another one can be observed.    

 
a) The displacement x2  versus  u and v 

 
b) The velocity 2x�  versus u and v 

 

Fig. 9. First  NNM. Independent variables x1 and the 
corresponding velocity (piecewise linear system) 

 

 More realistic damping characteristic is presented 
in Fig. 10. 

 
Fig. 10. The piecewise cubic shock absorption 

characteristic in the suspension 

 

Corresponding NNMs obtained in this case and 
transients from one surface to another one after gap 
(or “switching”) in the piecewise cubic damping 
characteristic  are shown in Figs. 11 and 12.  

 
a) The displacement x2  versus u and v) 

 
b) The velocity 2x�  versus u and v 

Fig. 11. First NNM. Independent variables x1 and the 
corresponding velocity (piecewise cubic system) 

 

 
a) The displacement x1 versus u and v 



 
b) The velocity 2x�  versus u and v 

 

Fig. 12. Second NNM. Independent variables x2 and 
the corresponding velocity (piecewise cubic system) 

 

8 Conclusion 
At the present time, it is known that NNMs are typical 
periodical solutions in n-DOF nonlinear conservative 
systems. Moreover, normal or quasinormal vibrations 
exist in broad classes of nonlinear, near-conservative 
systems.   

It is shown that methods of the NNMs theory 
permit to describe a behavior of systems containing 
nonlinear dynamical absorbers. The nonlinear 
dynamics of the double tracked road vehicle with a 
nonlinear response of the suspension can be analyzed 
by using the NNMs approach both for a case of the 
smooth nonlinear characteristic of suspension, and for 
a case of the non-smooth characteristic of the shock 
absorber.   
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